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ABSTRACT 

The reals with addition and the positive reals with multiplication are isomorphic as 

groups. From that point of view, the two-sided Laplace transform and the Mellin 

transform are different representations of the same transform. This allows us to easily 

derive the properties of the Mellin transform from the properties of the two-sided Laplace 

transform. The method extends to functions of several variables as well. 
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INTRODUCTION 

In this paper, two integral transforms are under consideration: the two-sided 

Laplace transform and the Mellin transform. Our purpose is to show that these two 

transforms are actually different versions of the same transform. Consequently, it suffices 

to study properties of one of them, and then simply translate the results to the language of 

the other. An additional advantage of this approach is that it extends nicely to the case of 

the transforms of functions of n variables. 

The equivalence of the two-sided Laplace transform and the Mellin transform has 

its roots in the isomorphism between the additive group of all real numbers R and the 

multiplicative group of all positive reals R+. We begin our investigation by defining and 

establishing a group isomorphism between these groups. The defined isomorphism 

transfers the Lebesgue measure on R to a new measure on R+. Next, we define 

convolution operations for functions on R and for functions on R+ which are related to 

the group operations in R and R+. Finally, we seek an operation that takes functions in 

one variable on R and redefines them in another variable on R+. This operation helps 

determine the simple substitution that is needed to show the equivalence between the 

properties of the two-sided Laplace transform and those properties of the Mellin 

transform. 

In Chapter 2, we discuss the Laplace transform and its properties. Chapter 3 is 

devoted to the Mellin transform. We do not use the integral definition to prove the 

properties of the Mellin transform; instead, we use substitution and properties of the 



Laplace transform. Finally, in Chapters 4 and 5, we extend this approach to functions of 

several variables. 



CHAPTER 1 

PRELIMINARY CONCEPTS 

The equivalence of the two-sided Laplace transform and the Mellin transform has 

its roots in the isomorphism between the additive group of all real numbers R and the 

multiplicative group of all positive reals R+. In this chapter, we take a look at the general 

definition of a group and the notion of a group isomorphism. Then, we establish an 

isomorphism between the two groups mentioned above and define a measure on R+ which 

is induced by the isomorphism. Finally, we define two convolution operations: for 

functions defined on R and for functions defined on R+. 

1.1. Groups (R, +) and(R+, • ) 

Definition 1.1. A group (G, *) consists of a set G and an operation * such that 

(a) for every ordered pair (x, y) of G there is a unique element x * y also in G, 

(b) (x * y) * z = x * (y * z ) for all x,y,z E G, 

(c) There exists an identity element e e G such that x * e = e * x = x for all x € G, 

(d) For every x eG there exist x~xe G such that x * x~x = x'1 * x = e, 

(x-1 is called the inverse of x) (Kim, 67-68). 

In this paper we consider two groups: the reals with the operation of addition, 

(R, + ), and the positive reals with the operation of multiplication (R+ ,- ). It is easily 

seen that in both cases all conditions in the definition of a group are satisfied. Clearly, R+ 



is a subset of R; however, (R+ ,• ) is not a subgroup of (R, +) since the operations are 

different. 

Definition 1.2. Let (U, *u) and (V, *v) be groups. A bijective function </>: 17-» V with 

the property that for any two elements x and y in 17, 

4>{x *u y) = <P(x) *v cf)(y) 

is called a group isomorphism from U and F.   If a group isomorphism exists, we say that 

the groups are isomorphic. 

Properties of an isomorphism: 

(a) 4>(ev) = ev, where ev is the identity of U and ev is the identity of V, 

(b) 0O-1) = OO))-1 for all x in 17, 

(c) 17 and V have the same cardinality, and 

(d) x and y commute in 17 if and only if <f>(x) and (p(y) commute in V. 

The proofs of (a), (b), and (c) are easily constructed using the previous 

definitions. To prove (d), note that xy = yx implies 

4>{x)4>{y) = <f>(xy) = 4>(yx) = <p(y)4>(x). 

Therefore, if z and y commute then <p(x) and <p(y) commute. If <f>(x)<f>(y) = <f>(y)<p(x), 

then <f>{xy) = <f>(yx). Since </> is 1-1, xy = yx is evident (Shapiro, 48-49). 

If two groups are isomorphic, we can say that they are replicas of each other. 

Although they may be defined by different elements and operations, they should still have 

the same structure with the same properties. To prove that (R, +) and (R+) •) are 

isomorphic consider the function <f>(x) — ex. We know that <$> is bijective and 

ea+b _ eae^ or eqUivaiently 0(o + b) = <f>(a)<f>(b).   The function <f) is indeed an 



isomorphism from (R, +) and (R+,-)- Note that the inverse of 0,0 1(x) = lna;, is an 

isomorphism from (R+i • ) to (R, +). 

1.2. Measures on R and R+ 

We proceed with defining measures on R and R+. A measure assigns a number to 

each set in a certain class. The objective of this section is to define a measure \i on R+ 

such that /j,((f)(S)) — X(S), where A is the Lebesgue measure on R. 

The Lebesgue measure is determined by the measure of intervals. The Lebesgue 

measure of any interval (a, b) is equal to the length ofthat interval, b — a. This measure 

can be calculated for any open set, since an open set is the union of open intervals. 

Standard techniques allow us to extend A to all measurable Borel sets, or all measurable 

sets (Ash, 3-26). 

Now we define a measure fj, on M.+. Since we want \i to satisfy the condition 

fi(<f>(S)) = A(5) for a set S C R+, we first apply 0-1 to that set to get 4r\S) c R, 

then find the A-measure of ^(S). This is the /i-measure of the set S C M.+. 

Definition 1.4. The //-measure defined on R+ is 

IfS = (a,b) C Rt.then^-1^^) = (lna,Inb) and A(lno,ln6) =ln&-lna = 

In -. Therefore, //(a, b) = In £. Similarly, we now choose the set S to be an interval 

(a, b) C R which implies (p(S) = (ea, eh). Then ACS') = A(a, b) = b - a and 

(j,(<f>(S)) — lne6 — lnea = b - a. Indeed, the two measures are equivalent, that is, 

\{S) = MiS)). 



Intervals in R do not change measure under translation. If we take any open 

interval (a, b) and add a constant c to every element in the interval, then the new interval 

(a + c,b + c) will have the same measure as the old interval.   By the definition of 

Lebesgue measure, we know that A (a, b) = b — a and 

X(a + c,b + c) = b + c — (a + c) = b — a. 

Since the Lebesgue measure of an arbitrary measurable set S is determined by the measure 

of intervals, we have X(S + c) = X(S), where S + c = {s + c,s e S}. Since addition in 

R corresponds to multiplication in R+, we expect the measure fj, to be "multiplication 

invariant". 

Example 1.1. Take S = (0,1) on R with X(S) = 1. Then 0(0,1) = (1, e) for which 

H(4>(S)) =lnf=lne-lnl = l.   Now add a constant c = 2 to S to get (2,3) for 

which X(S + 2) = 3 — 2 = 1. Using a specific numerical example we see that A is 

indeed translation invariant on R . However, y, is not translation invariant since 

ß(<t>(S) + 2) = JU(3, e + 2) = In ^±^ clearly does not equal ^(S)) = 1- 

Example 1.2. Let us start with a set on R+, say (2,3). Then 0-1(£) = (In2, In3). 

Clearly, (M(2, 3) = In f- and A (^(S)) = In3 - In2 = In §. Now let's multiply S by 

c = 2 to get (4,6) for which fj,(2S) = ln| = In|, which is the same as the //-measure of 

the original set. Therefore, we can say that /J is multiplication invariant on R+, but A is 

not multiplication invariant on R. 



1.3. Convolution of Functions on R and R+ 

As elements of R and R+ can be identified via the isomorphism <f), the function 

on R can be identified with the functions on R+. Let T be an operation such that 

(Tf)(t) = f(lnt). In other words, T takes functions in one variable in R and redefines 

them in another variable in R+. If/, g € C(R), then T/.Ty € C(R+)- 

In this section we define two convolution operations: one for functions on R and 

the other for functions on R+. 

Definition 1.5. The convolution of two functions / and g on R is defined as 

/oo 

f(t - s)g(s)ds, 
-oo 

if the integral exists almost everywhere. 

The objective here is to find a convolution for functions on R+ such that 

T(J*g) = (Tf) © (Tg). 

In other words, we want the following diagram to commute: 

f,9      T    )    Tf,Tg 

*     I i     0 

f*9   T_^   T(f*g) 

Figure 1.1 

This figure shows that the end result will be the same if we apply T to the functions before 

performing the 0 -convolution or perform the *-convolution first and then apply T. 



However, before beginning this task, we first show by example that * will not 

have the desired property, that is, 

T(J*g) ± Tf*Tg. 

Example 1.3. Let 

f& = { 0,    elsewhere and    9{x) =x' 

Taking the convolution of/, g we have 

/oo 

fix - s)g(s)ds 
•oo 

=       I   (x — s)ds 
Jo 

1 
1   2 \xa--s 

1 
=     X~2- 

Now using (Tf)(t) = /(lni), we have T(f*g)(t) = bit - \. 

Applying T to f,g first yields, 

W>W={J      elslwhere6 «*      Cr,)»=ht. 



Now taking the convolution of Tf, Tg, we have 

/>oo 

Tf(t)*Tg(t)      =      /    (Tg)(t-s)(Tf)(s)ds 
Jo 

=      / ln(t — s)ds 

,t-i 
=      /     Inudu = [u(\nu — 1)] 

Jt-e 
=     (t-l)lnt-(t-e)ln(t-e). 

Clearly, from the example, * does not work. So we are still seeking an operation 0 for 

functions on R+ that will give us the same convolution as * on R. 

We want to derive the convolution 0 using T_1 on C{ R+). The operation T'1 

takes functions on R+ to functions on R: 

(T-VX*) = /(e1)- 

For /, g defined on R, if we want 

T{f*g) = (Tf) 0 (Tg), 

we must have 

T(T-1/*T-1^) = /0fir 

for /, g defined on R+.   This can be used to find a formula for f Q g. Indeed, we have 

(fQg)(t)     -     T(f(ex) * g(ex)) 

=     T^jy(ex-S)g(es)ds^ 
/oo 

f(eXnt-s)g(es)ds 
■oo 

=      /   / ( ~ ) 9(f) — (allowing es = r). 



Definition 1.6. The convolution of two functions / and g on K+ is defined as 

if the integral exists almost every where. 

The convolution 0 is the standard convolution in the space of functions on the 

group (R+) • ) with respect to measure \x. 

Theorem 1.1. Given two functions f, g for which the convolution exists, 

T(f*g) =TfOTg. 

Proof of Theorem 1.1 follows from the above calculations offOg. 

10 



CHAPTER 2 

TWO-SIDED LAPLACE TRANSFORM 

2.1. Basic Definitions 

In this chapter, we discuss the two-sided Laplace transform, its interval of 

convergence, and some basic operational properties. 

Definition 2.1. (Two-sided Laplace transformable functions). A function / is called two- 

sided Laplace transformable, if af < ßf where 

</—00 

ctf = 'va£\u} Gl:  /     ^{x^e^dx <oof, 

and 

( f00 

\ewxdx <oo ßf = sup{w GR:  /   |/(x)|< 

The interval (oif,ßf ) will be called the interval of convergence, denoted by £2a(/(x)), 

and the subset of the complex plane {x + iy: x E (af,ßf )} will be called the strip of 

convergence, denoted by fi<c(/(#))• 

11 



The following theorem is a direct consequence of the above definition. 

Theorem 2.1. Let fix) be a two-sided Laplace transformable function. Then the 

integral 

/oo 

esxf(x)dx 
■00 

converges for every s € f2c(/(#))• 

Proof: Note that 

/oo pO /"oo 

esxf(x)dx =  /    esxf{x)dx +   /    esx f(x)dx. 
■oo </—oo JO 

Thus, the integral f^e™ f(x)dx converges if and only if f_ooe
sxf{x)dx and 

f™esx f(x)dx both converge. We have 

/    \esxf{x)\dx     =      /"    |e(Res+iIms)a7(>)l<to 
J—oo J— oo 

=      /    |e(Res):ci|e(Im5)a:||/(a:)|drc 
</—oo 

=      /    e(Res)x|/(x)|dx < oo, 
J — 00 

since s e Qc{f{xj) and thus Res > ctf. Similarly, 

/>0O /"OO 

/    esxf(x)dx     =      /    |e(Res + iIms)x/(^)l^ 
Jo Jo 

/>oo 

=      /    |e(Res)a!||e(I,na)x||/(a;)|dx 
Jo 

e(Res)x|/(x)|dx < oo, 

12 



since s e Qc(f(x)) and thus Res < /?/ . □ 

Definition 2.2. (Two-sided Laplace transform). Let / be a function of the real variable x, 

then 

/oo 

oo 

is called the two-sided Laplace transform of/. 

Thus, the two-sided Laplace transform of / is a function defined in the strip of 

convergence of/. 

This definition is not the conventional definition of the Laplace transform. The 

standard definition is C{f(x); s} = f^e'31 f(x)dx. We could say that we are using the 

mirror image of the standard transform. Our definition facilitates the construction of the 

proofs. Since the two-sided Laplace transform is the only form of a Laplace transform 

considered in this paper, we will simply call it the Laplace transform. Likewise, two-sided 

Laplace transformable functions will be called Laplace transformable. 

2.2. Basic Operational Properties of the Laplace Transform 

Theorem 2.2. (Shifting Property). If f(x) is Laplace transformable and a is a real 

constant, then eaxf(x) is Laplace transformable and and we have 

LI £{eaxf(x);s} = £ {/(x); s + a}. 

Moreover, if ClR(f(x)) = (af,ßf), then fiR(eax/(a;)) = (af - a,ßf - a). 

13 



Proof: From the definition, 

/oo 

esxeaxf(x)dx 
■00 

/oo 

e^s+a)xf{x)dx 
oo 

=     jC{f(x);s + a}. 

This proves LI. Moreover, since C {f{x)\ s + a} is defined whenever 

s + a e (oif,ßf), £{eaxf(x); s} must converge for s e (af - a, /?/ - a). D 

Theorem 2.3. (Translation Property).   Iff(x) is Laplace transformable and a > 0, then 

f{x + a) is Laplace transformable and we have 

L2 £{/(x + a);s}= e~as£ {/(*);*}, 

Moreover, £{/(x); s} andC{f{x + a);s} have the same interval of convergence. 

Proof: We have 
/oo 

■oo 
/oo 

es{u-a)f{u)du 
00 
/oo 

■oo 

=     e-asC{f{x)-s}. 

This proves L2. Moreover, since e~asC {/(x); s} is defined whenever s 6 (a/, /?/), 

C{f{x + a); s} must also converge for s € (ctf,ßf). Ö 

14 



Theorem 2.4. (Scaling Property). If fix) is Laplace transformable and a ^ 0, then 

f(ax) is Laplace transformable and we have 

L3 C{f{ax)-s} =  -C(f(x);-}. 

Moreover, ifQR(f(x)) = (a/,/3/), thenQm(f(ax)) = (aaf,aßf). 

Proof:  A simple substitution yields 

/oo 

esxf(ax)dx 
00 

1  f°° 
=       - /    e3°f(u)du 

aj-oo 

=       - /    eu°f(u)du 
aJ-oo 

=       -C{f(x);3-}. 
a     <. aJ 

Thus, L3 holds. Moreover, since \C {f(x); f} is defined whenever j[  e (a/, /?/), 

£{/(ax); s} must converge for s e (aay, a/3/). D 

Theorem 2.5. (Derivatives of the Laplace Transform). If f(x) is Laplace transformable, 

then xf(x) is Laplace transformable and we have 

L4 C{xf(x)-s} = — C{f(x);s}. 

Moreover, Q.R(xf(x)) = AR(/(X)). 

15 



Proof: By differentiating within the integral sign, we obtain 

j />0O    ß 

SW(»);.}   =   /.* «-/<*)* 
/oo 

a;es:r/(x)(ix 
oo ' — oo 

r-oo /oo 

esxa;/(x)dx 
■oo 

=     £{x/(x);s}. 

This proves L4. Moreover, since £C{f(x); s} is defined whenever s e (a/, /?/), 

£{x/(x); s} must also converge for s 6 (a/, /3/). Ü 

Corollary 2.5. If fix) is transformable andp{x) is a polynomial, then p{x)f{x) is 

Laplace transformable and we have 

C{p{x)f{x)-s}=p{j-s)£{f{x)-s}. 

Theorem 2.6. (Laplace Transform of Derivatives). Iff(x) is Laplace transformable 

and lim esxf(x) = lim esxf(x) = 0 for alls E 0R(/(x)), then f'(x) is Laplace 
x—>oo x—>—00 

transformable and we have 

L5 £{/'(x);s} = -sC{f(x);s}. 

Moreover, fiR(/'(a;)) = %(/(»). 

16 



Proof:   Using integration by parts, we get 

/oo 

e"f(x)dx 
-oo 

/oo 

e"f(x)dx 
■00 

=      lim esxf(x) - lim esxf(x) - sC{f{x); s} 
x—>oo x—>—00 

=      -s£{/0);s}. 

This proves L5. Moreover, since - s£{f(x); s} is defined whenever s e (a/, /?/), 

C{f'(x); s] must also converge for s e (a/, /?/). D 

Theorem 2.7. (Convolution Theorem). Iff(x) and g{x) are both Laplace transformable 

andQ,^(f{x)) n fi»(^(a;)) ^ 0, tf?e« f(x)*g(x) is Laplace transformable and we have 

L6 £{/(aO*p(aO; s> = £{/(*); s}^{p(x); s}. 

Moreover, ifQw(f(x)) = (af,ßf) andflR(g(x)) = (ag,ßg), then£lm(f(x)*g(x)) C 

(af,ßf)n(ag,ßg). 

Proof:   Letting u = x — y and changing the order of integration, we obtain 

/OO       /"OO 

/    e3Xf(x-y)g(y)dxdy 
ooJ— 00 
/oo     />00 

/    g{y)e<u+^f{u)dudy 

/OO /"OO 

esyg(y)dy       esuf(u)du 
00 «/ — 00 
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This proves L6. Moreover, since £{f(x); s} and C{g(x); s} are defined whenever 

se(af,ßf) n (ag,ßg), £{f(x)*g(x);s} must also converge for 

se(af,ßf)n(ag,ßg). 

Theorem 2.8. {Inversion Formula for the two-sided Laplace transform). If f(x) is 

integrable over every finite interval and is two-sided Laplace transformable, then 

hm —— / F(s)e ax°ds = , 

where F(s) = £{/(#); s}, f(x) is of bounded variation in some neighborhood of x0, 

andc e (ctf,ßf). In particular, if f is continuous at x0, then 

D 

pc + iT 
lim  „   . 

T-^-oo 2m. 
±-. f   % F(s)e-sx°ds = f(x0). 
Im Jc _ iT 

The proof can be found in Integral Transforms by Lokenath Debnath. 
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CHAPTER 3 

MELLIN TRANSFORM 

In this chapter, the Mellin transform of fit) and its properties are derived using simple 

substitutions and basic properties of the Laplace transform. 

3.1. Basic Definitions and Comparison with the Laplace Transform 

Definition 3.1. (Mellin transformable functions). The function /(£) is Mellin 

transformable if Af < Bf where 

Jo 
Af=mf<ioe R: /   \f{t)\H^ldt < oo \, 

and 

Bf = supju; € R :  /    IfHW^dt < oo }. sup|a;€ R:  f   |/(t)|r_1dt 

Therefore, the interval of convergence of the Mellin transform of/is (Af, Bf), denoted 

byAR(/(t)). 

Theorem 3.1. A function f : (0, oo) —> R is Mellin transformable if and only if f(ex) is 

two-sided Laplace transformable. Moreover, AÄ (/(£)) = ^(/(e1)). 
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Proof: Note that 

/    \f{ex)\\esx\dx     =      f   \f(ex)\\e^x\\ei{lms)x\dx 
J —oo J— 00 

=      /     |/(ex)|e(Res)a;^ 
J — oo 

Resdt =  ['mm 
Jo 

=   f'mm^-'dt 
Jo 

Similarly, 

/•oo />oo 

/    \f(ex)\\es*\dx     =      /    \f{e*)\e^xdx 
Jo Jo 

= jfl/(*)l*Reaf 
=    ['ifiW^dt. 

Jo 

Therefore, 

infi to E R :  / IfiW^dt < oo 1 = infj <o el:  /   |/(e*)|eW!rdx < oo 

and 

supjwe R:  /   If&lt^dt < ooj = supjw el:/   |/(ex)|e^da; <oo|. 

This proves that AR(/(t)) = 0R(/(e:E)) and f(t) is Mellin transformable if and only if 

f(ex) is Laplace transformable. □ 
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Theorem 3.2. Iff(t) is a Meilin transformable function, then /0°°ts 1f(t)dt converges 

for every s e Ac (/(*)). 

Proof: Since j^°t3'1 f(t)dt = $™ ex^ f {ex)ex dx = J^f^e^dx, this theorem 

follows from Theorem 3.1. D 

Definition 3.2. (TheMellin Transform). Let / be a function of a real variable t, then 
/•oo 

M{f(t);s}=      ts-xf{t)dt 
Jo 

is called the Mellin transform of /(£). 

Suppose we take f(x), substitute x = lnt, then apply the Mellin transform: 

/•oo 

M{fQnt);s}     =      /    t3'1 f(\nt)dt 
Jo 
/oo 

exs'xf{\nex)exdx 
■00 

/oo 

e3Xf(x)dx. 
00 

In other words, the Laplace transform of f(x) is the same as the Mellin transform of 

/(In t) and we have the relation, 

£,{f(x);s}=M{f(lnt);s}. 

Conversely, the Mellin transform of f(t) is the same as the Laplace transform of f(ex), 

and we have the relation 

M{f(t);S}=£{f(ex);s}. 
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These two equalities will be useful in proving the basic operational properties of the Mellin 

transform. We formulate them more precisely in the following two theorems. 

Theorem 3.3. Iff(x) is Laplace transformable, then fQnt) is Mellin transformable and 

jC{f(x);s}=M{f(\nt);s}. 

Theorem 3.4. If fit) is Mellin transformable, then f{ex) is Laplace transformable and 

M{f(t);s}=£{f(e*);s}. 

Taking into account our previous discussion, we can say that the two-sided 

Laplace transform and the Mellin transform are two versions of the same transform. The 

first one is defined for functions on the group (R, +), and the second one is defined on 

the isomorphic group (R+, • ). The group isomorphism identifies the two transforms. 

3.2. Basic Operational Properties of the Mellin Transform 

The construction of the following proofs of the basic properties of the Mellin 

transform will be quite different from the standard method of integral substitution. The 

procedure consists of allowing t = ex and rewriting the Mellin transform in terms of the 

Laplace transform, M {/(t); s} = £ {/(ex); s}. Then, by carefully applying appropriate 

properties of the Laplace transform, we prove the properties of the Mellin transform. 
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Theorem 3.5. (Scaling Property).  If fit) isaMellin transformable function and a > 0, 

then the function f(at) isMellin transformable andwe have 

Ml M{f{at); s} = a"sX{/(i); s}. 

Moreover, AR(/(ai)) = AR(/(i)). 

Proof: By replacing t with ex, we have 

M{f(at);s}     = £{f(aex);s} 
= £{f{elnaex);s} 

= £{f{ex + lna);s} 

= e-slna£{/(ea;);S} (by L2) 
= a-s^{/(i);s}- 

This proves Ml. Moreover, since asM{f(t); s} is defined whenever 

s e AR (/(£)), M{f(at); s} must also converge for s e AR (/(£)). □ 

Theorem 3.6. (Translation Property). If f (t) is a Mellin transformable function, then 

the function taf{t) isMellin transformable andwe have 

M2 M{taf(t);s}=M{f(t);s + a}. 

Moreover, AR(taf(t)) = AR(/(t)) - a. 

Proof: Using LI, it is clear that 

.M {*■/(*);*}     = C{(exTf(ex);s} 
= £{cM/(c*);a} 
= £{/(e*);S + a} 
= A4{/(i);a + a}. 

23 



This proves M2. Moreover, since M {f(t)\ s + a} is defined whenever 

s + a e AK(/(i)), M {taf(t); s} must converge for AR (/(*)) - a. D 

Theorem 3.7. If fit) is a Mellin transformable function, then the function f(ta) is 

Mellin transformable and we have 

M3 Minns} =iM{f(t>iy 

Moreover, AK(/(ia)) = aAR (/(*)). 

Proof: For this particular proof, L3 is used to show 

M{f (?);*}   =   £{/((0°);«} 
=    £{/(e")i«} 

=     M^O 
a       i. a J 

This proves M3. Moreover, since \M {/(i); §} is defined whenever | e AR(/(*)), 

,M{/(ta);s} converges for s e oAH(/(t)). □ 

Theorem 3.8. If f{t) is a Mellin transformable function, then the function \f{\) is 

Mellin transformable and we have 

M{]f(}}s}=M{f(±);s-l}. 

Moreover, AR(±/(±)) = 1 - AR(/(i)). 
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Proof: Using LI, we have 

=     £{/(e-*);S-l} 

This proves M4. Moreover, since M {fit 1); s - 1} is defined whenever 

s - 1 G - AK(/(t)), M{\f{\); s} converges for s e 1 - AR(/(t)). D 

Theorem 3.9. Iff(t)isa Mellin transformable function, then the function (log t)f(t) 

isMellin transformable and we have 

M5 M{(logt)f(t);s}= j-sM{f(t);s}. 

Moreover, A»((log *)/(*)) = AR(/(*)). 

Proof:   Here, L4 is required to show 

M{0og *)/(*);«}     = £{(loge*)/(e*);S} 
= C{xf(e*);s} 

= ^-£{f(e*y,s} 

= j-M{f(t);s}. 

This proves M5. Moreover, since j;M{f{t); s} is defined whenever s e AK (/(£)), 

M{(log t)f(t); s} must converge for s 6 AK(/(£)). D 
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Theorem 3.10. (Mellin Transforms of Derivatives). If'/(£) isaMellin transformable 

function, then the function f(t) is Mellin transformable and we have 

M6 M {/'(*); s}= -(s- 1)M {/(*); s - 1}. 

Moreover, AR(/'(*)) = AR (/(*)) +1. 

Proof:  Note that if we differentiate /(e1), we simply get exf'(ex). Therefore, to prove 

the above relation we let h(x) = f(ex) implying h'(x) = exf'(ex), and we get 

M{f'(ty,s}     = £{f'(exy,s} 
= £{e-a:/i/(x);s} 
= £{ti(x);s-l} (by LI) 
= -(s-l)£{/i(x);s-l}        (byL5) 
= _(a-l)£{/(e*);8-l} 

= -(*-l)M {/(*);*-!}. 

This proves M6. Moreover, since - (s — 1)M {/(£); s - 1} is defined whenever 

s - 1 e AR (/(*)), M {/'(t); s} must converge fors e AR(/(*)) +1. □ 

Corollary 3.10. i/"/(t) is Mellin transformable, then $zf(t) is Mellin transformable and 

we have 

M^f(t);s^ = (-ins-l)(s-2).-is-n)M{f(t)]S-n}. 
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Theorem 3.11. (Convolution Property). Iff(t) and git) areMellin transformable 

functions and AR (/(£)) n AK (#(£)) ^ 0, then the function f(t) 0 g(t) isMellin 

transformable and we have 

M7 M{f(t) 0 g(t); s} = M{f(t); s} M{g(t); s}. 

Moreover, AM(f(t)Qg(t)) c AR(/(t))nAR(s(t)). 

Proof: Using Theorem 1.1, we can write 

=     £{/(eI);S}£{5(ea:);S}      (byL6) 
=     M{f(t);s}M{g(t);s} 

This proves M7. Moreover, since M{f(t); s} and M{g(t); s} are defined whenever 

s e A»(/(*)) n AR($(*)), A*{/(t) O p(t); s} converges for s € AR (/(*)) n AR(g(t)). 

D 

Theorem 3.12 (Inversion Formula for the Mellin transform). If fit) is integrable over 

every finite interval and is Mellin transformable, then 

c+ioo -I       pc+ioo 

m = 2^ /        tSF{s)dS> 4H ' Jc—ioo 

where F(s) = M{f(t)\s}, fit) is a real valued function on the positive half line, 

s is a complex number, and c E A» (/(£)). 
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Proof: Using the Laplace Inversion Formula, we have 

/(O     =     -M        £{}{ex)-s}es*ds 
2m Jc_ioo 

-i />C+JOO 

and hence       /(i)       =     — /       £{f(ex);s}tsds 

1       pc+ioo 

=     ^/        M{/(*);a}fda. 27" 7c_ioo 
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CHAPTER 4 

TWO-SIDED LAPLACE TRANSFORM OF 

FUNCTIONS OF n VARIABLES 

In this chapter, we want to extend the concept of the Laplace transform of 

functions of one variable as discussed in Chapter 2 to that of n variables. 

4.1. Groups (Rn,+) and (R?, o) 

We will use the following notation: s = (si,..., sn), t = (ti,...,tn), 

x = (xi,...,a;n), a = (alt..., an), r = (rlt... ,rn), u = (ui,...,un), 

u> = (wi,...,wn), aoi = (aiti,...,antn), s • a: = siXi + ... +sn^n, and for a set 

S C Rnanda e Rn, define S - a = {(si - alf... ,s„ - an) : (si,...,sn) e 5}. The 

operation + is addition on Rn, o is the operator on R+, and • is the dot product of two 

vectors. 

In this chapter we consider two groups: (Rn, +) under the operation of 

addition, and (R+   o ) under the o -operation. In both cases all conditions in the 

definition of a group are satisfied. Clearly, R? is a subset of Rn; however, (M^ o) is not 

a subgroup of (Rn, +) since the operations are different. 

Furthermore, the two groups are isomorphic, and they share the same structure 

with the same properties. In fact, $(ar) = (e*1,..., eXn) is a group isomorphism from 

(Rn, +)to(R?i o). Note that the inverse of $, $_1(*) = (lnti,...,lntn), isan 

isomorphism from (R?   o)to(Rn, +). 

29 



4.2. Convolution of Functions on Rn and R+ 

Definition 4.1. The convolution of two functions / and g on Rn is defined as 

(/*<?)(*) =   / f(t-s)g(s)ds, 

if the integral exists almost every where. 

Extending the concept from Chapter 1, our objective here is to find a convolution 

for functions of several variables on K+ such that 

T(f*g)(t) = (T/)(*) 0 (Tg)(t), 

where T is the operation defined by (Tf)(t) = /(lnti,..., lntn). Therefore, T takes 

functions of n variables in Rn and redefines them as functions of n variables in R+. 

We want to derive © using T~lon C(R+). The operation T'1 takes functions 

on R?to functions on W1: (T^f^x) = /(eXl,...,c*»). For/, ^ defined on Rn, if we 

want 

T(/*p)(t) = (Tf)(t) 0 (Tp)(t), 

we must have 

for /, g defined on R". 

T(T-1f*T-1g) = fQg 
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Therefore, we have 

(/©<?)(*)     =     T(f(e*\...,ex»)*g(exi,...,e*»)) 

=     T(( f{ex^,...,ex«-s")g(esi,...,es»)ds\ 

=      f f(elntl-Sl,...,elnt"-s")g(eSl,...,es")ds 

Vo       Jo      \ri rnJ n        rn 

Definition 4.2. The convolution of two functions / and g on R? is defined as 

if the integral exists almost everywhere. 

Theorem 4.1. Given two functions f, gfor which the above convolution exists, 

T{f*g) = (Tf) © (Tg), 

The proof of this theorem follows from the above calculations offOg. 

4.3. Basic Definitions 

Definition 4.2. (Two-sided Laplace transformable functions). A function fix) is called 

two-sided Laplace transformable, if the set 

fiR„(/(x)) = lweRn: J \f{x)\ew-xdx < ooj, 

has a non-empty interior. 0,Rn(f(x)) is called the region of convergence off(x). 
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The following theorem is a consequence of the above definition. 

Theorem 4.2. Let /(a?) be a two-sided Laplace transformable function. Then the 

integral 

f eaxf(x)dx 

converges for every s such that (Re si,..., Re sn) 6 fiRn (/(#)). 

Proof: If (si,..., sn) € Cn and (Resi,..., Res„) 6 fiKn(/(a;)), then 

/ \e'-xf(x)\dx= [ e^es^---e(-Res^x"\f(x)\dx<oo, 

since f{x) is two-sided Laplace transformable. □ 

Definition 4.3. (Two-sidedLaplace transform). Let f{x) be a function of (xi,..., rrn), 

then 

£{/(rr);S}= / e°-*f(x)dx 

is called the two-sided Laplace transform of f(x). 

Thus, the two-sided Laplace transform of f(x) is a function defined in the region 

of convergence of/. 
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4.4. Basic Operational Properties of the Laplace Transform 

Theorem 4.3. (Shifting Property). Iff{x) is Laplace transformable and a e W, then 

ea'xf(x) is Laplace transformable and we have 

LI £{e a-xf{x)- 8} = £{/(*); s + a}. 

Moreover, QRn(ea'xf(x)) = QRn(f(x)) - a. 

Proof: From the definition, 

£{ea-*}{x)-s}     =      [ esxeaxf(x)dx 
Jmn 

=      f e{a+a)-xf(x)dx 
Jm.n 

=     £{f(x);s+ a}. 

Thus, LI holds. Since £ {/(#); s + a} is defined whenever s+ a G 0,Rn(f(x)), 

C {eaxf(x); s} must be defined for s G ftR„(/(#)) -a. D 

Theorem 4.4. (Translation Property). Iff(x) is Laplace transformable and a e W1, 

then f(x+ a) is Laplace transformable and we have 

L2 £{f(x + a);s} = e~aaC {/(*);«}. 

Moreover, QMn{f(x + a)) = fiM„(/(a:)). 
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Proof:   Allowing u = x + a we obtain 

£{f{x+ a);s}     =      f eaxf(x + a)dx 

=      f e"-{u-a)f(u)du 

-as I   e*-*f(u}du 
JR" 

=     e 

=     e-a-*C{f(x);s}. 

L2 holds. Since e-as£{/(rc); s} is defined whenever s e ty*. (/(»)), £{f(x + a);s} 

must also be defined for s e fiK„ (/(#)). E 

Theorem 4.5. (Scaling Property). Iff(x) is Laplace transformable, then 

f(xi,..., axk, ...,xn) is Laplace transformable andwe have 

L3 jC{f(x1,...,axk,...,xn);s} =  -C{f(x); (su ..., -^,... ,snJ J. 

Moreover, QRn(f(x1,..., axk,...,xn)) = ak o £2Kn(/(a?)), where 

ak = (1,..., 1, a, 1,..., 1) with a being in the kth place. 

Proof: We are applying the scalar a to only one component in the vector, 

C{f(xi,...,axk,...,xn);a}     = /  ea'x ffa,... ,axk,... ,xn)dx 

= f e
s^---eSkXk---es"x"f(x1,...,axk,...,xn)du 

= - f es"Xl---e>«---es"x"f(x1,...,xn)du 

= i£{/(x);(Sl)...,^,...)Sn)}. 
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L3 holds. Since \C{f(x); (si,..., f,..., sn) } is defined whenever 

(si,...,f,...,sn) eümnUix)),C{f{x1,...,axk,...,xn)\s} must be defined for 

s eakoQRn(f(x)). D 

Corollary 4.5. Iff(x) is Laplace transformable and a ^ 0, then /(a ox) is Laplace 

transformable and we have 

£{f(a«x);s} = ±-..±c{f{x);(^,...M}. 
ax      an    { V°i anJ) 

Moreover, ßR„(/(a o a?)) = a o fiM„(f(x)). 

Theorem 4.6. (Derivatives of the Laplace Transform).   If f(x) is Laplace 

transformable, thenxkf(x) is Laplace transformable and we have 

L4 ^-C {/(a?); *} = C {xkf(x); s}, 
osk 

where k e {1,2,..., n}. Moreover, QRn(xkf(x)) = QRn(f(x)). 

Proof: By differentiating within the integral sign, we obtain 

=      I  xke"-xf(x)dx 

=      /  e3'xxkf(x)dx 

=     £{xkf(x);s}. 

Clearly, L4 holds. Since £{xkf(x); s} is defined whenever s e 0Rn(/(a:)), 

^£ {/(ar); s} must also be defined for s e QRn(f(x)). O 
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Theorem 4.1. (Laplace Transform of Derivatives).   Iff(x) is Laplace transformable 

and lim eSkXkf(x) = lim eSkXkf(x) = 0 for all sk such that there is 
Xfc—>00 Xk~»—OO 

(Sl,..., sk,..., sn) E %.(/(*)) and all x € Rn, then £-J(x) is Laplace 

transformable and we have 

L5 £{ä^/(ar);s}= -s*£ {/(*); s>> 

wfore fc e {1,2,... ,n}. Moreover, ^(£-J(x)) = OR«(/(»)). 

Proo/- Using integration by parts in the integral with respect to xk, 

=      -skC{f(x);s}. 

This proves L5. Since - skC{f(x);s} is defined whenever s E nE„(/(rr)), 

C{£-J(x); S} must be defined for s e QRn(f(x)). Ü 

Theorem 4.8. (Convolution Theorem).   If f(x) and g{x) is Laplace transformable and 

nmn(f(x)) n (QRn(g(x)) ^ 0, then f(x) * g(x) is Laplace transformable andwe have 

L6 £{/(*) * <?(*); s} = £{f(x); s}jC{g(x); a}. 

Moreover, (^„(/(a?) * #(a;)) C %«(/(«)) D (fiKn(^(a;)). 
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Proof:   Allowing u = x — y and changing the order of integration, we get 

C{f(x)*g(x);s}     =      /   f eaxf(x-y)g(y)dxdy 
JM." JM.n 

=      f   f e8<u + ^f(u)g(y)dudy 

=      / ea-yg{y)dy [ e"-uf(u)du 

=     C{f(x)]a}C{g(x);a}. 

Thus, L6 holds. Since £{/(*); s} and £{g(x); s} are defined whenever s e QWn(f(x)) 

and s e 0,Rn(g(x)) respectively, £{f(x) * g(x); s} must be defined for s 

ectRn(f(x))nnmn(g(x)). □ 

Remark.   The two-sided Laplace transform of functions with n variables can be viewed as 

an iterated application of n two-sided Laplace transforms with respect to variables 

(xi,...,xn). Therefore, the inversion formula can be obtained by iterated application of 

the two-sided Laplace transform of functions of a single variable (see Theorem 2.8). 
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CHAPTER 5 

MELLIN TRANSFORM OF 

FUNCTIONS OF n VARIABLES 

In this chapter, the Mellin transform of/(<) and its properties are derived using 

simple substitutions and basic properties of the Laplace transform of functions of n 

variables. 

5.1. Basic Definitions and Comparison with the Laplace Transform 

Definition 5.1. (Mellin transformable functions). The function /(*) is Mellin 

transformable if the set 

**«(/(*)) = {«;€»?: yj/(*)|*r-1-"C"1d* < oo} 

has a non-empty interior. AR„ (/(<)) is called the region of convergence of/(*). 

Theorem 5.1. A function } : R+ —> Rn is Mellin transformable if and only if 

/(eXl,..., eXn) is Laplace transformable. Moreover, AR„ (/(*)) = fiRn(/(eXl,..., ex")). 
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Proof: Note that 

/ |/(eaV..,e*»)||e-|<te 

=     /     \f(eXl g:rn,)||e(Resl)a;i...e(Resn):I;n||e(iImsi)xi_-e(2lmsn)xrI|^ 

Jmn 

=  f |/(eXl,...,ex")|e(Resi)xi---e(Res")a:"drc 

=   /   l/Wltf31-1---^3"-1^. 

This proves that AMn (/(*)) = ClRn(f(eXl,...,ex»)) and /(*) is Mellin transformable if 

and only if/(eXl,..., eXn) is Laplace transformable. □ 

Theorem 5.2. If f(t) is a Mellin transformable function, then the integral 

( tr1---ts
n«-1f(t)dt 

JM.% 

converges for every s e Cn such that (RQSI,... ,Re sn) E AR* (/(£)). 

Proof: Since 

/  |tf_1--<n_1/(*)|d*= /  |/(eXl,...>e
iB")|c*Xl.--e3»x»da?, 

this proof follows from Theorem 5.1. D 
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Definition 5.2. (The Mellin Transform). Let / be a function of n variables (t\,...,tn) 

then 

M{f(t);s} = ■trxf{t)dt 

is called the Mellin transform of/(<). 

Thus the Mellin transform of /(£) is a function defined in the region of 

Suppose we take /(or), substitute a? = (ln*i,..., lntn), then apply the Mellin 

transform 

M{fQnt1,...,lntn)]8}     =      [  tf"1---t^f(Intu...,Intn)di 

=      / eflia!l-"e*,,aSn/(lne:Bl
>...)lneXn)da: 

=      / e"-xf(x)dx. 

In other words, the Laplace transform of f(x) is the same as the Mellin transform of 

/(lnti,..., lntn)and we have the relation, 

C{f{x);s} = M{f(\nt1,...,lntn);s}. 

These two equalities will be useful in proving the basic properties of the Mellin transform. 

We formulate them more precisely in the following two theorems. 
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Theorem 5.3. If f{x) is Laplace transformable, then /(lnti,..., lnin) isMellin 

transformable and 

C{f{x); s} = M{/(lnti,..., ln*n); a}. 

Theorem 5.4. If fit) is Mellin transformable, then f(eXl ,...,ex")is Laplace 

transformable and 

M{f(t);s}=£{f(ex\...,ex»);s}. 

Taking into account our previous discussion, we can say that the two-sided 

Laplace transform of n variables and the Mellin transform of n variables are two versions 

of the same transform. The first one is defined for functions on the group (Rn, +), and 

the second one is defined on the isomorphic group (R+, O ). The group isomorphism, 

^(x1,...,xn) = (ex\...,ex"), 

identifies the two transforms. 

5.2. Basic Operational Properties of the Mellin Transform 

As in the single variable case, we will prove the following properties by using a 

similar procedure: allowing t = (eXl,..., eXn) and rewriting the Mellin transform in 

terms of the Laplace transform, M {/(<); s} = C {/(e11,..., e*"); s}, we then construct 

the proofs using only Laplace properties. Finally, once the proof is completed in the 

Laplace space, we transform the end result to the Mellin space using the same substitution. 
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Theorem 5.5. (Scaling Property). Iff(t) is a Mellin transformable function and 

a e M.+ , then the function f(a o t) is Mellin transformable andwe have 

Ml {/(a ot);s} = (op ■ ■ • a^)M{f{t)- s}, 

Moreover, AHn(/(a o *)) = AR« (/(*)). 

Proof: By replacing t = (eXl,..., eXn), we have 

M{f(aot);s}     = £{/(ao (e*1,... ,e*")); s} 

= £{/((elna\...,elna")o (ex\...,e*»));s} 

= £{/(ea;i+lnai,...,ex"+lna");s} 

= e-
Sllnai---e-s"lna"jC{f(eXl,...,ex");s}      (byL2) 

This proves Ml. Since op- • • a~s".M{/(*); s} is defined for s e AKn(/(*)), 

^V4{/(a o *); s} must also be defined for s 6 ART.(/(*)). O 

Theorem 5.6. Iff(t) is a Mellin transformable function and a G M.+ , then the function 

t^1 ■ ■ •£""/(£) is Mellin transformable andwe have 

M2 M{t?---Cf(t);s} =M{f(t);e + a}. 

Moreover, ARn(^...^/(*)) = ARn(/(*)) - a. 

Proof:    Using LI for n variables, it is clear that 

M{t? ■■■Cf(t);s}     = jC{ea^---ea"x*f(ex\...,ex»y,s} 
= jC{ea-*f(ex\...,ex»);s} 
= £{f(ex\...,ex»);s+a}        (by LI) 
= M{f(ty,8+ a}. 
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This proves M2. Since M{f(t); s + a)} is defined for s + a E ARn(/(*)), 

M{i% • • ■*£"/(*); s} must be defined for s e ARn(/(*)) - a. □ 

Theorem 5.7. If fit) is a Mellin transformable function, then the function f(tf,..., C) 

isMellin transformable and we have 

M3 M{f(t?,...XnY,s} = MUWI7 7 ai an, 
M{m,...Xn);s} =1-...1M{/(*); 

al        an k 

Moreover, AR» (/(t?1,..., *£•)) = a o AR„ (/(*)). 

Proo/:   For this particular proof, L3 for n variables, is used to show 

M{f(tl\...,tan);s}     =     C{f(ea^,...,e^);s} 
£l £n , ... , 
ai an 

=     -...-£(/(e*\...)e*«);( 

=    L..±M!m(!L ••)) 
0-1        an I \al an/J 

This proves M3. Since (^- • -^)M{/(*); (J, • • •, £)} is defined for 

(^,..,|)eAr(/(i)), M{/(*?, ■•■,#'); *} must be defined for a e aoARn(/(*)). 

D 

Theorem 5.8. If f(t) is a Mellin transformable function, then the function 

t~"' ^ / (t~' • • •' t~) *5 Mellin transformable and we have 

Moreover, AR«(i-i/(i .... J); a) = AR„ (/(*))+ (1,...,1). 
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Proof: Using LI for n variables, we have 

^l...!/1 
t„ \ U tn 

=     £{e-Xi---e-x«f(e-x\...,e-x»);s} 

=    £{/(e-V..,e-'*«);s-(l, •••,!)} 

= *{/(£.-».£>--&-»4 

This proves M4. Since M{f(±,..., £); s - (1,..., 1)} is defined for 

a-(l l)eAR»(/(<)),M{i-i/(i...,i); s} must be defined for 

D 

Theorem 5.9.   //"/(*) w a Mellin transformable function, then the function 

(log tk)f(t) is Mellin transformable and we have 

M5 M{(log «*)/(*);•}= ^M/(');*}, 

w/jere k e {1,2,... n}. Moreover, ARn((log tk)f(t)) = ARB(/(*)). 

Proof:   Here, L4 for n variables is required to show that 

A<{(log tk)f(t); *}     =     £flog eXÄ/(eXl,..., e*"); s} 
=     £{xkf(ex\...,ex»);s} 

d-£{f(ex\...,ex»);s} 
dsk 

_d_ 
dsv 

M{f{t);s}. 

Clearly, M5 holds. Since £;M{f(t)\ s} is defined for s e ARn(/(*)), 

M{(\og tk)f(t); s} must also be defined for s e AKn(/(*)). D 
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Theorem 5.10. (Mellin Transforms of Derivatives). Iff(t) is a Mellin transformable 

function, then the function gf-/(*) is Mellin transformable and we have 

M6 •M{J-/(*);S}= -(sk-l)M{f(t);(Sl,...,sk-l,...sn)}, 

where k 6 {1,2,... n). Moreover, ARn(^-/(t)) = ARn(/(*)) + (0,..., 1,..., 0), with 

1 being in the k-ih. place. 

Proof: Note that if we differentiate /(eXl,..., ex"), we simply get eXhfk(eXl,..., eXn) 

where fk is the fc-th partial derivative. Therefore, to prove the above relation, we let 

h(x) = f(exi,...,ex«) implying £h(x) = ex*fk(ex\...,ex»), and we get 

M{fk(t);s}     =     C{fk(ex\...,ex»);s} 

= ie~Xk£;Hx);8} 
=     jcl-£-h(xy,(Sl,...,sk-l,...sn)\ (by LI) 

=      -(sk-l)C{h(x);(s1,...,sk-l,...sn)}        (byL5) 
=      -(sk-l)£{f(ex\...,ex*);(Sl,...,sk-l,...sn)} 
=      - (sk-l)M{f(t);(s1,...,sk-l,...sn)}. 

This proves M6. Since - (sk - l)M{f(t); (si,..., sk - 1,... sn)} is defined for 

(si,..., sk - 1,... sn) E AMn(/(*)), M{^f(t); s} must be defined for 

seARn(f(t)) +(o,...,i,...,o). □ 
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Theorem 5.11. (Convolution Property). If'/(*) and g(t) are Mellin transformable 

function awrf AR« (/(*)) n ARn(p(t)) 7^ 0, tfze« the function f(t) 0 #(*) isMellin 

transformable and we have 

M7 M{/(t) 0 <?(*); *} = M{f(t)}M{g(t)}. 

Moreover, ARn(/(t) 0 #(*)) C ARn(/(*)) n ARn (#(*)). 

Proof: Using Theorem 4.1, we can rewrite 

A4{/(*) ©<?(*);*}     =     £{/(eXl,...,ex")*p(ciBl
>...>e

a;'');a} 
=     C{f{e*,..., e*»); a}£{ «tfe*1,..., e*"); *}       (by L6) 
=    M{f(t);s}M{g(t);s}. 

Clearly, M7 holds. Since M{f(t); s} and M{f(t); s}are defined for s e ARn (/(*)) 

and s e A»n(ff (*)), A4{/(*) O p(t); s} must be contained in AR„(/(*)) n ARn(^(*).   D 

Remark. The Mellin transform of functions with n variables can be viewed as an iterated 

application of n Mellin transforms with respect to variables (*i,..., tn). Therefore, the 

inversion formula can be obtained by iterated application of the inverse Mellin transform 

of functions of a single variable. 
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